- \(a^{\log_{a}b}=b\),
identitatea logaritmică fundamentală;
- \(\log_{a}b=\log_{a}c \Rightarrow b=c, (b,c>0);\)
- \(\log_{a}a=1;\)
- \(\log_{a}1=0;\)
- \(\log_{a}a^{c}=c;\log_{a}\frac{1}{b}=-\log_{a}b;\)
|
- \(\log_{a}\sqrt[n]{b}=\frac{1}{n}\log_{a}b,\;\;(b>0,n\in\mathbf{N},n\geq2);\)
- \(\log_{a}b\cdot\log_{b}a=1;\)
- \(\log_{a}b=\frac{\log_{c}b}{\log_{c}b}\), formula de schimbare a bazei logaritmului;
- \(\log_{a}x\cdot y=\log_{a}x+\log_{a}y, x>0,y>0;\)
- \(\log_{a}\frac{x}{y}=\log_{a}x-\log_{a}y, x>0,y>0;\)
|